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Invited Article 

The local field in uniaxial liquid crystals 

by A. A. MINKO, V. S. RACHKEVICH and S. YE. YAKOVENKO 
A. N. Sevchenko Institute of Applied Physical Problems, 220064 Kurchatova 7, 

Minsk, U.S.S.R. 

(Received 17 March 1988; accepted I5 June 1988) 

Analysis of the various models for the local field shows that most of them give 
similar Lorenz-Lorentz formulae for nematic liquid crystals. They differ only in 
the way they define parameters such as the structural anisotropy. Because of the 
arbitrariness of the model parameters, the structural anisotropy values in the 
Lorenz-Lorentz equation for liquid crystals can be better determined with the help 
of experiment. The results of absorption dichroism measurements for this purpose 
are analysed in some detail. 

1. Introduction 
Optical methods are very valuable for molecular and structural studies of liquid 

crystals. For example, measurements of the refractive indices of liquid crystals are 
frequently analysed to yield information about the degree of orientational order and 
the polarizabilities of the constituent molecules. Moreover, the special optical 
properties are the reason for the technological interest in them. However, the relation- 
ship between the refractive indices of a nematic and its microscopic structure is not 
straightforward. A quantitative evaluation of the results of optical experiments 
requires a knowledge of the difference between the local field E' of a light wave, 
experienced by a molecule, and the macroscopic or Maxwell field E in the medium, 
that is a knowledge of the local field correction factorf, connecting the amplitudes of 
these fields, E' = fE.  

The local field expression given by Lorentz [l], 
f = + ( E  + 21, (1) 

is only valid for cubic crystals with point polarizabilities at the sites of the lattice ( E  

is the dielectric permittivity). Even for isotropic liquids this expression is only 
approximately valid: the intermolecular correlations have to be taken into account. 
Moreover, the non-uniformity of the local field leads to contributions of higher 
multipole interactions. For liquids consisting of anisotropic molecules such corrections 
become very complicated. These problems have been treated in many papers devoted 
to the investigation of the local field in isotropic liquids [2]. Similar studies exist for 
liquid crystals. Orientational and orientational-translational correlations of the 
molecules resulting from intermolecular forces have been analysed [3-51. The effects 
of the non local character of the molecular polarizability and the peculiarities of its 
distribution over the molecular volume, its renormalization due to interactions with 
the nearest surroundings, have also been treated [6]. However, it seems impossible 
now to take all these factors systematically into account. The reason for this lies in 
the complexity of the mesogenic molecules in combination with the presence of 
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2 A. A. Minko et al. 

internal degrees of freedom. In consequence various semi-empirical models have 
become very popular in treating the local field problem. 

In these models the authors try to account for the main feature of liquid crystals, 
namely their translational disorder and anisotropy. This includes not only the 
anisotropy of the molecular polarizability and of the orientational distribution, but 
also the anisotropy of the intermolecular distances, the so-called structural anisotropy. 
Actually, the question relating to the local field can be stated in two parts. First, which 
of the theories should be preferred and secondly, even if we find the preferred theory, 
how can we determine the model parameters describing the structural anisotropy? 
This article focuses on these two problems. 

Later we shall analyse some models for the local field in uniaxial liquid crystals 
with the aim of making their advantages and potential for the description of the 
interaction of light with liquid crystals explicit. As we shall see, the only acceptable 
methods with which to determine the model parameters and the local field anisotropy 
are experimental. The plan of the article is as follows: first, we consider the analogues 
of the Lorenz-Lorentz equation for liquid crystals. Then we discuss the relative merits 
and limitations of the various assumptions that have to be made in order to determine 
the model parameters. Finally, we present experimental methods for the determination 
of the local field anisotropy. The article is not meant to be a general review of existing 
local field models and theories. Furthermore, we deal only with non-polar compounds 
or the high-frequency limit. Since our emphasis is on the long range structural 
anisotropy, we shall not discuss models in which this effect is neglected (see, for 
example, [7]). We shall not pay much attention to the agreement or disagreement of 
the various theories with experiment; often those ‘experimental’ results are obtained 
with the help of similar or other theories, and there are many reasons for any type of 
agreement to be fortuous. Consequently, the models are discussed from the point of 
view of their possible theoretical justification. 

2. Generalization of the Lorenz-Lorentz equation for liquid crystals 
2.1. Lattice theories 

There are two ways to calculate the local field in a liquid crystal. The first is to 
use formulae obtained originally for anisotropic crystals. Another way is to introduce 
the anisotropy of the liquid-crystalline phase into models developed for isotropic 
liquids. 

The first route has been taken by Maier and Saupe [8]. They supposed that 
molecules in a nematic phase are distributed over a simple lattice, and followed 
Neugebauer’s development [9]. The local field at any point within the polarized liquid 
crystal is obtained by summing the electric fields due to the induced dipoles situated 
at  all the lattice sites and the external field. To calculate the contribution from the 
induced dipoles, Neugebauer drew a sphere around a particular particle (see figure 1). 
As in the Lorentz model, the radius of the sphere is chosen to be large in comparison 
with the average distance between two neighbouring dipoles, and this distance must 
be sufficiently larger than the distance between the positive and negative charges of 
one particle. This allows the physical dipoles of finite size to be replaced by point 
dipoles. The dipoles outside the Lorentz sphere can be dealt with as if they fill the 
space uniformly, using the result for the cavity field from electrostatics of continuous 
media. The contribution of the dipoles within the sphere to the field at the centre, 
which in the isotropic case is equal to zero, depends on the type of lattice and may 
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Invited Article: The IocalJield in liquid crystals 3 

Figure 1 .  Neugebauer model for the calculation of the local field factor. The local field E’ 
differs from the macroscopic field E due to the charges induced at  the surface of the cavity 
by the field E and due to the contribution of the induced dipoles inside the sphere. 

be calculated in any particular case. For uniaxial liquid crystals the principal axes of 
the molecular polarizability tensor, averaged over all possible orientations, are 
parallel to those of the dielectric permittivity tensor. The Maier-Saupe-Neugebauer 
model then leads to a simple relation for the factor f, connecting the local and 
macroscopic fields, namely 

fy, = +[n’, + 2 + a(n2, - I)], L2 = $[nt + 2 - 2a(n: - I ) ] ,  ( 2 )  
where a is determined by the parameters of the crystalline lattice, and the ni denote 
the principal components of the refractive index of the mesophase. As we are 
only concerned with the high frequency limit, nf = c i i .  

A more straightforward way to calculate the induced dipole contribution to the 
local field was proposed by Born and Huang [lo]. In their method for evaluating the 
lattice sum they have no need to postulate a cavity model. Introducing the Lorentz- 
factor tensor L, Dunmur [ I  1,121 has rewritten their result in a more convenient form 
and extended it to liquid crystals. For uniaxial liquid crystals the L tensor is diagonal 
with respect to the principal axes, and the local field factor may be written as 

Li = 1 + Lii(Eii - 1 ) .  (3) 
Consequently, the generalized Lorenz-Lorentz equation takes the form 

where e and a are the number density and the molecular polarizability tensor, while 
the brackets denote an average over the molecular orientations. 

The best model of the dielectric properties of a material has to reproduce the 
results from an exact microscopic theory. For molecular crystals the lattice model is 
exact, and the Lorentz factor tensor can be calculated precisely for any particular 
lattice. However liquid crystals are macroscopically anisotropic fluids which have only 
short range translational order. Therefore in the absence of a microscopic theory of 
such fluids, the cavity/continuum model of the internal field probably is physically more 
appealing. So we shall now analyse the cavity models developed for isotropic liquids. 

2.2. Cavity theories 
First, the extension of the Onsager model by de Jeu and Bordewijk [ 131 should be 

mentioned. They approximate a molecule by an anisotropic homogeneously polarizable 
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4 A. A. Minko et al. 

Figure 2.  The model of molecular arrangement resulting from the de Jeu-Bordewijk con- 
sideration. ninst and nav indicate the instantaneous and average orientations of the 
director. 

spheroid filling the cavity in the anisotropic homogeneously polarized continuum (see 
figure 2). They did not succeed in deriving an expression for the local field factor from 
a molecular model of a liquid crystal. Based on experimental data, the authors require 
the local field to be independent of the macroscopic dielectric anisotropy. As a result, 
they obtain an expression for the local field factor similar to equation, (3), 

xi  = 1 + Qi (E i i  - I), ( 5 )  

where the principal values of L are now identified with the depolarization factors of 
a dielectric prolate spheroid with an axial ratio a, /a2 equal to that of the molecular 
repulsive core (see figure 2); thus 

or 

1 + 1  
213 1 - 1  

Q = E[ In- - z ] ,  

where 

(7) 

The range of the depolarization factors is 0 < Q, < f when 0 < a,/a, < 1. The 
analysis of de Jeu’s result shows that such a local field acts on a molecule only in the 
case of total orientational correlation of the molecules in a nematic liquid crystal, 
which is the case when orientational disorder is due to the variation of the director 
orientation (cf. nlnst on figure 2 ) .  

Perhaps the work by Segre [I41 is based on a much more realistic model (in this 
paper the less successive approaches by Petrov and Kuznetsov are criticized). Following 
Onsager, he has solved the electrostatic problem for a partly oriented anisotropic 
spheroid in a uniaxial dielectric continuum (see figure 3). His result for the local field 
factor may be written as 
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n 

Figure 3. The Segre model for the calculation of the local field. The order parameter is defined 
as s = (+(3cos2e - 1)). 

i.e. unlike de Jeu’s model, the depolarization anisotropy of the Onsager cavity 
(mzz - mXx)S is proportional to the second rank orientational order parameter S. The 
proportionality coefficient equals the anisotropy of the depolarization factors of the 
cavity, defined as the repulsive core of the intermolecular pair potential (mii = - Qj) .  

2.3. Comparison of the diflerent approaches 
As we can see comparing the relations (2), (5) and (8), very different approaches 

to the local field problem, based on different models, result in formally identical 
expressions if it is assumed that 

- a  = -(mrz - m,)S = R, - 52, = L,  - L,. (9) 

Moreover, the molecular statistical theory of nematics also gives similar expressions 
for the local field factor [3,5] when orientational fluctuations are ignored 

xi = +(nf + 2 )  + gii(n: - 1) (10) 

(an alternative expression is discussed in the Appendix). In [5] it is shown that it is 
possible to construct inside a polarized anisotropic fluid a surface with the property 
that the contribution of the dipoles within the volume bounded by this surface to the 
electric field at the origin is zero. The shape of this generalized Lorentz cavity and the 
associated local field factors are connected with the radial distribution function. More 
recently, a simple model [16] (see also figure 4), incorporating only steric inter- 
molecular repulsions, predicted the anisotropy of the local field to be very nearly 
proportional to the orientational order parameter, in good agreement with Segre’s 
predictions 

where k = a, /a,  is the molecular length-to-breadth ratio. Hence we can conclude that 
formally the results of different models and molecular statistical approaches are 
similar to that given by equation (3). 

The relationship between the continuum and lattice models has been discussed by 
Dunmur and Munn [17]. They have calculated the dielectric properties of a simple 
model, treating the molecules as sphero-cylinders arranged on a trigonal lattice with 
one molecule in the primitive unit cell. Their results indicate that for axial ratios up 
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6 A. A. Minko et al. 

I t 

Figure 4. Illustration of the lowering of the averaged cavity anisotropy due to orientational 
disorder (according to the steric repulsion model 1161). 

to five the assumption of an ellipsoidal cavity for a molecule in a fluid gives the same 
value for the local field as fixing the molecule on a regular lattice with the same spatial 
anisotropy . 

Of course, these results should only be considered as models, and their predictions 
only approach the exact results. To derive molecular polarizabilities from the refractive 
index data we have to take into account the local orientational and translational 
ordering, the real distribution of the electron density over the molecular volume, the 
contributions of many body interactions and, probably, some other effects. However, 
it has been shown [3] that the effect of pair correlations can be formulated as a 
renormalization of the molecular polarizability. It may be hoped that this is the case 
for other contributions too. When we only analyse the long range effects of the 
dipole-dipole interactions, the problem is reduced to choosing the appropriate cavity 
or lattice. 

3. Approximations to determine the model parameters 
3.1. Exact molecular statistical results 

From the viewpoint of molecular statistics, the factor 

z = -$(Lzz - L,) 

which characterizes the structural anisotropy is determined by the anisotropy of the 
pair distribution function. In the absence of orientational correlations this relation 
can be written in the form [5]  

(12) 
z = - 1 [1n(Rc(?))(3r; - l)dSZ, 

4n 
where i is a unit vector in the laboratory fixed coordinate system with components r , ;  
dR is the angular volume element and R,(?) is the distance from the origin to a point 
on the surface of the generalized Lorentz cavity in the direction i. The equation of this 
surface is [5] 

In(&(?)) = lnb - 

where g(r?) is the radial distribution function and b is an arbitrary constant. Using 
the well-known properties of this function, equation (13) may be rewritten in the form 
more suitable for analysis, but less easy for computation, 

1 
471 T = - - s sg? dr(3xx - 1)dSZ. 
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Invited Article: The local field in liquid crystals 7 

However, it is rather difficult to calculate the pair distribution function even for 
isotropic liquids consisting of symmetrical molecules. For liquid crystals a proper 
theory is completely absent. Even if a microscopic theory of anisotropic fluids existed, 
the cavity shape would not necessarily be expressible as an analytic function. It is 
desirable therefore to determine the structural anisotropy of the mesophase on the 
basis of some additional approximations and models. 

It is convenient to consider the structural anisotropy effect on the local field factor 
tensor after transforming the equations connecting the components of the tensors L 
and f (for example, equations (3)) to the corresponding expressions for the mean value 

f = 3 ( L  + 2fXJ 

6f = KL - f x , )  

and the local field tensor anisotropy 

[18]: 

J; = 1 + 4nLji + Sn6L6x, (15) 
6f = 4n(& + j 6 L  + 6x6L), (16) 

where x is the dielectric susceptibility tensor. Here and later the overbar and prefix 6 
denote the average value and the anisotropy respectively. Taking the relationship 
between the dielectric susceptibility and permittivity into account we have 

f = + ( E  + 2) + 26E7, (17) 
Sf = p s  + ( E  - 1)z + 6 E Z .  (18) 

It should be noted that these formulae are valid independently of the model used to 
calculate 7. 

According to X-ray diffraction results [ 191, the mean distance between the centres 
of molecules in nematics along the director is larger than that in the perpendicular 
direction, and therefore 7 < 0. We can see from equation (1 7) that both the structural 
anisotropy z and the optical anisotropy 6c contribute to the mean value of the tensor 
f. 7 dependent terms are always negative in the nematic phase of non-polar liquid 
crystals and tend to zero when approaching the phase transition to the isotropic 
liquid. On the other hand, the anisotropy in the tensor f may be positive or negative 
depending on the values of 6~ and z. The effect of varying the local field anisotropy 
with the wavelength of light is essential for the interpretation of absorption dichroism 
measurements for pure liquid crystals and their solutions. 

3.2. Di$erent model approximations 
First of all we discuss the model proposed by Vuks [20]. The analysis of experi- 

mental data lead him to the assumption that the local field in an anisotropic 
medium can be effectively independent of the direction and is equal to + ( E  + 2)E. 
From equation (18) it is clear that the local field can be isotropic in two cases: 
(1) = z = 0, giving 

f,, = f,, = 7 = 3(E + 2); (19) 
this corresponds to the case of an isotropic liquid when the correlation of neighbouring 
molecules is ignored; (2) 8c # 0, 7 = zkr where 

8 E  
zk = 

3(E - 1 + 6 E ) ’  
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8 A. A, Minko et al. 

while 6 f vanishes in this case, the local field factor 

differs from that proposed by Vuks. I t  is clear from equation (20) that the local field 
in liquid crystals can be isotropic for such a mesophase structure that z = z k .  In other 
words, this is the case when the structural and optical anisotropies compensate for 
each other. It is worth noting that the value of z only changes with temperature while 
zk depends also on the wavelength of light because of the dispersion of the refractive 
indices. Therefore the local field in a liquid crystal can be isotropic for some specific 
wavelength. As the dispersion of refractive indices for liquid crystals is relatively 
small in the visible region far from the absorption bands, these relations may be 
approximately valid in a sufficiently wide spectral interval. The temperature dependence 
of tk and z, obtained with different methods, is illustrated in table 1. 

An attempt to account for the local field anisotropy, while interpreting the 
refractive index data, has been made by Saupe and Maier [8]. To determine the 
structural anisotropy factor they proposed to equate the average molecular polar- 
izability in the isotropic and liquid-crystalline phases 

We do not compare the results obtained by this method with other models (see 
table l), but we do want to draw attention to the problems of such a method. First, 
the polarizability of the molecules can change not only during the transition from the 
isotropic liquid to the mesophase, but within the mesophase temperature interval as 
well. This variation can be caused either by conformational flexibility of the mesogenic 
molecules [33] or directly by intermolecular forces [34]. Secondly, in deriving the 
analogue of the Lorenz-Lorentz equation for liquid crystals several assumptions have 
been made (molecular point polarizabilities or homogeneously polarizable molecules, 
the absence of the local order, etc.). The effect of molecular correlations, for example 
the pair correlations [3,4,35], is to change effectively the molecular polarizability. 
Deviations from equation (3) are small: from a comparison of the results obtained for 
totally correlated and uncorrelated models they have been estimated to be about 1 per 
cent. However this is the same order of magnitude as the difference between the 
refraction in an isotropic liquid and the averaged refraction l? = ( E  - I)/@ + 2) in 
the nematic phase. Thus, because the optical and structural properties are connected 
in expression (22) in such a way that small variations of the molecular polarizability 
lead to large errors in the determination of T ,  this method is often unreliable. 

Better results can probably be obtained if z is estimated from the molecular 
geometry. For example, de Jeu [13] proposed that the axial ratio of the model 
ellipsoidal cavity should be equated to the molecular width-to-length ratio and hence 
to calculate Ri from equation (7). The molecular length can be determined from the 
geometric dimensions and the width from the volume per molecule in the mesophase. 
The values of z obtained in this way for 4-n-pentyl-4’-cyanobiphenyl (5CB) and 
4-methoxybenzilidene-4’-n-butylaniline (MBBA), which have been well studied, are 
equal to - 0.107 and - 0.1 1, respectively (the results for other compounds are given 
in table 1). Only a perfectly oriented nematic phase can possess such a large structural 
anisotropy. This particular choice for the model ellipsoid is based on the proportionality 
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10 A. A, Minko et al. 

between the magnetic susceptibility and the dielectric permittivity anisotropies 
determined by de Jeu, and also on the constancy of E/e at the nematic-isotropic 
transition. It is unlikely that these conclusions can be generalized to all nematics. It 
is not obvious why the molecular polarizability has to vary in such a way that the ratio 
i/Q, which is related to it via formulae (3), is constant at the phase transition. In 
addition, it is clear that the local field anisotropy can only be independent of the 
optical anisotropy of the liquid crystal to a first approximation (see equation (18)). 
Only in this case are the dielectric properties proportional to the magnetic ones. All 
of these conditions are satisfied only when all of the molecules are perfectly oriented 
and the director, which is homogeneous in the sample, fluctuates around its average 
orientation as shown in figure 2. 

In the model proposed by Segre [14] the structural anisotropy of the mesophase 
is proportional to S and such a temperature dependence of t is in agreement with the 
molecular theory [16]. We can therefore calculate t from the molecular axial ratio and 
from the order parameters which have been determined by independent (for example 
magnetic) methods, t = t,,, S .  These are given as the t5 in table 1 (tmax was calculated 
from equation (7)). It should be noted that the proportionality coefficient obtained 
from the simple molecular statistical theory 

2 k - 1  
tmax = - - - 

5 k + 2  

(cf equation (1 1)) is considerably larger than that calculated from equation (7) 
(approximately 50 per cent for the compounds listed in table 1). However it is difficult 
to indicate a preference for one of these models. 

With good accuracy An = (n, - n,)  K S and Segre's model can be considered as 
the confirmation of the temperature dependence of An proposed by Averyanov and 
Shabanov [18]. They have suggested that the anisotropy of the Lorentz cavity is 
decreased compared with the molecular anisometry by a factor proportional to An: 

- -  - const. l t ( W I  
An(AT) 

In such a case the order parameter can be obtained from the refractive indices data 
as 

s = So(1 + c), (24) 

where 

fi2 - 1 iiz - 1 I t lmax 

ii2 + 2 n, + n, An,,, 
CJ = -[9k- + 3kAn - 1 1 ,  k = -. 

Here Acc is the anisotropy of the polarizability in the molecular reference system. t,,, 
and Anmax correspond to a perfectly ordered sample. Using equations (23) and (24), 
good agreement has been found between the order parameters obtained by optical 
methods and N.M.R. spectroscopy for compounds such as 4,4'-dimethoxyazoxy- 
benzene (PAA) and 4,4'-diethoxyazoxybenzene (PAP) [ 181, 5CB and 4-n-heptyl-4- 
cyanobiphenyl (7CB) [23,24]. However, this assumption is not completely satisfactory 
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because the determination of the coefficient k remains to a certain extent arbitrary. 
For example, the value for k of 0.381 [23] is noticeably larger than 0.319 which can 
be obtained by the same method from the refractive indices [29] and the molecular 
dimensions [30] of 5CB. The resulting uncertainty in the values for z obtained with 
these ks can also be noted from table 1 (z2 and z2,) .  In view of these differences in 
predicting the structural anisotropy parameter, the development of an independent 
experimental method to determine the local field anisotropy in liquid crystals is of 
great importance. 

4. Experimental methods for the determination of the local field anisotropy 
4.1. Non-optical methods 

We begin by considering the determination of the geometric parameters of the 
model cavity via neutron and X-ray diffraction [21]. The analysis of neutron and 
X-ray diffraction patterns gives the molecular pair distribution function along the 
director and in the plane perpendicular to it [19,36]. This allows us  to calculate the 
mean intermolecular distances in these two directions. However, it is very questionable 
whether such mean distances can be taken as the semi-axes of the model ellipsoidal 
cavity. Almost all local field models which we have discussed are based on the 
assumption that there is no correlation between molecules. Then the mean inter- 
molecular distances to be used are those obtained after averaging over the orientational 
distribution function. On the other hand diffraction patterns depict the real local 
packing of the molecules, and the intermolecular distances so obtained are approxi- 
mately equal to the van der Waals radii [19]. Hence the cavity anisometry obtained 
in this way is closer to the molecular anisometry than to that of the ellipsoidal cavity 
postulated in the model theories. The former can only be used, perhaps, in de Jeu’s 
theory. 

Another way to deal with the pair distribution function extracted from X-ray 
scattering is to use equations (12) and (1 3) or (1 4) for the determination of z. However 
the previous arguments apply to this case as well, since these equations have been 
derived in the approximation of no orientational correlations. 

4.2. Optical probing 
Another experimental method for the direct determination of the local field 

anisotropy is based on absorption dichroism measurements. In fact, the dichroic ratio 
for a partly oriented molecular system is determined by the order parameter Sand the 
anisotropy of the local field acting on a molecule 

1 - ss, 
1 + SS,’ 

N = o  

where 

and D is the absorption coefficient, the subscripts indicate the orientation of the light 
polarization relative to the nematic director. In equation (25) it is assumed that the 
molecules possess axial symmetry and 

s, = +(3c0s2 p - 1) 
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12 A. A. Minko et al. 

depends on the angle f l  between the transition dipole moment and the long molecular 
axis. If the order parameter S is zero for the molecules under consideration, but the 
system is still macroscopically anisotropic, the local field anisotropy can be determined 
directly from the absorption dichroism measurements: 

Such measurements have been made [37]. The absorption dichroism of (P Mo,,O,,)~- 
ions dissolved in a liquid-crystalline mixture have been measured. The solute molecules 
have a spherical shape (for the case of absorption this means a symmetry not lower 
than tetrahedral) and correspondingly S is zero. The local field has been shown to be 
almost isotropic (t = -0.067, An = 0.35) for frequencies at the long wavelength 
edge of the absorption band of the probe. Based on these observations it was con- 
cluded that the isotropic local field model is the most preferable for the interpretation 
of optical experiments for the majority of liquid crystals. 

More precise measurements have been made for W(CO),, Cr(CO), and 
Mo(CO), dissolved in a compensated cholesteric mixture [38]. This matrix, which 
is transparent to short wavelengths down to 250nm, permits detailed studies of 
the frequency dependence of the solute dichroism to be performed. It has been found 
that the dispersion of the dichroism is not monotonic and is qualitatively different 
for the various spherical probes studied. This lead to the conclusion that for these 
probes the main contribution to the absorption dichroism is not from the local 
field anisotropy, but from the lowering of the molecular symmetry caused by 
molecular interactions with the liquid crystal host. It should be added that because 
of the nature of the hexacarbonyl probes, not only their geometry but to a greater 
extent also the electro-optical molecular parameters may be changed drastically 
by charge-transfer complexation with the host. The significance of these specific 
interactions is also confirmed by absorption dichroism studies of halogenated 
methanes in an MBBA host [22]. It is impossible to explain the observed dichroic ratio 
values for CBr, and their temperature dependence for CCI, within a reasonable 
range of values for the structural anisotropy factors. In order to determine the local 
field anisotropy, it was decided to perform optical probing in the I.R. spectral range 
[39]. Tetramethylsilane and tetramethylsilane-d,, were used as probes for they are 
characterized by rather intense vibrational absorption bands. These compounds do 
not form quasi-chemical bonds with the host molecules and it can be expected that 
their absorption dichroism is caused only by the local field anisotropy. The results are 
given in figure 5. The question which remains is what is the relationship between the 
local field acting on a probe molecule and that on a liquid crystal host molecule? 
Of course, the local field is only a method for the description of the molecular 
interactions, primarily the dipole-dipole interactions induced by the external field. 
These interactions are long range in nature and therefore the anisotropy of the 
local field acting on a probe molecule is determined by the structure of the liquid- 
crystalline sample as a whole. It seems reasonable therefore to take the same 
local field for different molecules in the same host, but we should stress that at 
this stage we do not yet have any real evidence for this. In other words, we do 
not know the relative contributions from higher multipoles, non-dispersive inter- 
actions and the contributions caused by the peculiarities of the shape of the solute 
molecules. 
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Figure 5. The dichroic ratios for some I.R. bands of tetramethylsilane (TMS) and tetra- 
methylsilane-d,, (DTMS) in a 5CB host and z values obtained from these data via 
equation (26) (z4 in table 1). Vibrational frequencies of the solutes: +, 861 cm-' TMS; 
(O), 742cm-' DTMS; (0), 694cm-' TMS. 

4.3. Absorption dichroism measurements for  nematics 
It is possible to determine the local field anisotropy by studying the dichroism not 

only for spherical probes but also for the nematogenic molecules themselves. In fact, 
the presence of the anisotropic local field results in a difference between the 
orientational order parameters determined from light absorption by uniform planar 
and homeotropically oriented nematic films [24]. In other words, measuring the ratios 

where Nk = Dk/D,,, Dk and D,, are the absorption densities for the parallelly 
polarized band of the mesomorphic substance in the nematic and isotropic phases, it 
is possible to determine both the orientational order parameter and the structural 
anisotropy. Moreover, for the determination of z in contrast to the determination of 
S, it is not necessary to know the orientation of the transition dipole moment under 
consideration ( S  in equation (27) is simply replaced by SS, for cylindrically symmetric 
molecules). This method has been extended to biaxial molecules [40], i.e. when none 
of the components in the tensor 9 characterizing molecular orientational ordering in 
a uniaxial mesophase are equal. It should be noted that even mean field or cavity 
models will give a biaxial local field tensor in this case. Unfortunately, this fact is 
neglected in [40] which accounts for the limited applicability of their expressions. It 
may be that similar local field problems are responsible for the discrepancies in the 
dependencies of the magnetic and the dielectric susceptibility anisotropies on the 
uniaxial and biaxial order parameters which have been found [41]: their treatment of 
the dielectric phenomena based on Faber's model of a continuous nematic is by no 
means the way to overcome the local field correction problem. 

The absorption dichroism method has been used to determine the local field in 
various liquid crystals (see [42] and references therein). The values of z calculated in 
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14 A. A. Minko et al. 

Table 2. The structural anisotropy factor of some nematic liquid crystals with different optical 
anisotropy at (TNI - T )  = 10K. 

Liquid crystal An [41] L,, [41] t + (m2, - m x x )  S 3s (m,? - m,) 

5CB 0.185 0.40 -0.07 -0.107 0.58 [24] - 0.062 
80CB 0.166 0.39 -0.06 -0.12 0.60 [24] - 0.072 
CPHOBT 0.150 0.38 -0.05 -0.12 0.55 [40] - 0.066 
5BCOS 0.102 0.36 -0.03 - 0’107 0.54 [41] - 0.058 

t CPHOB: 4-cyanophenyl ester 4-n-hexyloxybenzoic acid. 
3 SBCO: 1 -(4-cyanophenyl)-4-n-pentyl-(2,2,2)-bicyclooctane. 

this way from the polarized component intensities of the C i N stretching vibration 
band for 5CB and 7CB, for example, are in good agreement with those obtained from 
equations (23) and (24) [24] (see also table 1). It is interesting to compare the results 
of these systematic studies with the predictions of the models mentioned previously. 
As we can see from table 2, the agreement of the data obtained from I.R. measure- 
ments and from the Segre model (i.e. from the relation t = +(mZ, - m,)S)  is not 
very encouraging. There are many reasons for such a discrepancy and one of them is 
the neglect of the short range correlations in the model calculations. 

The advantage of this method over optical probing is that it deals with the local 
field acting on the mesogenic molecules themselves. However it is worth noting that 
the large absorption dichroism for liquid crystals results in large experimental errors 
in the determination of &i, while the band intensity change due to the local field 
anisotropy at the phase transition is very small. In this way the orientational ordering 
can mask the local field anisotropy which results in large uncertainties in the values 
obtained [24]. 

Furthermore, we can compare this method with that proposed for dealing with 
refractive index data (see equation (22)). Equations (27) imply a constancy of the 
oscillator strength. Keeping in mind the Kramers-Kronig relation it is clear that 
almost all criticism concerning equation (22) for the refractive indices is applicable 
here. Thus changes in the molecular conformation and local packing and as a result 
changes in the non-central molecular interactions during the phase transition lead to 
variations in the molecular oscillator strength which are of the same order as those 
caused by the local field anisotropy. Only for I.R. spectra or, more precisely, for the 
absorption bands originating from vibrations of a separate bond in a large molecule, 
do our assumptions seem to be less arbitrary, because here we are dealing with 
interactions of almost point dipoles in comparison with intermolecular distances. This 
can help us to calculate more reliably the contribution of the dipoles induced by an 
external field, i.e. the local field effects. However we still know nothing about how the 
permanent dipole interactions can affect the absorption spectra. 

4.4. Theoretical basis for  dichroism measurements in polar liquid crystals 
To deal properly with polar fluids we have to base our discussion on another 

model, for the interaction of the whole liquid-crystalline sample with the light wave 
must be considered and not just the process of light absorption by only one molecule 
placed in the local field of the light wave. Here we shall develop this approach for the 
case of vibrational spectra. 
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The absorption coefficient for an infrared active band of an isolated molecule is 
given by 

where jlll, = (mlAln)  and om, are the dipole moment and frequency for the transition 
between the rnth and the nth vibrational states, respectively; 1 and c denote the 
polarizations and velocity of the radiation. In condensed matter all molecules interact 
with each other and the process of the absorption of light is a collective one. To obtain 
a relationship between the total absorption coefficient and the properties of the 
constituent molecules we consider an infinitesimal macroscopic volume element of the 
sample as an absorbing system in the macroscopic Maxwell field of the light wave in 
the medium. Thus, similarly to equation (28), the expression for the intensity becomes 

4n2 
hv v k = - W~~IM,,  .l12, 

where M,, is now the transition dipole moment of the volume V and v denotes the 
velocity of light in the sample. Using perturbation theory, M, for the fundamental 
bands of a harmonic oscillator can be shown to be proportional to the derivative of 
the dipole moment of the sample with respect to the vibrational normal coordinate. 

The instantaneous dipole moment of the sample depends upon the molecular 
arrangement. It can be written as the sum of the permanent and induced terms 
(see, for example, [2]) 

M = 14 - 1 Mi [ oil4 + c T m a m D m i & ] ,  (30) 
I l # l  m f r  

where 

0, = T, + 1 TlffIC, + . . * , 
l # l J  

T, = T(r, - r,) is the dipole-dipole interaction tensor. Here we have omitted terms 
resulting from higher electric moments. In the same way we can write the dipole 
moment of a sample consisting of non-polar molecules placed in an electric field E as 

-.. 

Comparing equations (30) and (31) and taking the symmetry of the tensors T and a 
into account, equation (30) can be rewritten as 

M = cd&f;. (32) 

Now we expand M, Jkland cx in powers of the normal coordinate of the vibration 
being considered. For example, 

A%? = J ~ ? ~ + M Q + + M ’ Q ~ + . . . ,  (33) 
(the subscript e refers to the equilibrium configuration, and the derivatives, denoted 
by primes, are also taken at the equilibrium position). Equations (32) and (33) 
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16 A. A. Minko et al. 

lead to 

+ 1 D,!,a,T,,a, + 1 Dima~Tmiai  + DinanTnia; ] . (34) 
l # i  m # i  n f i  

The first term contains the well-known local field correction factor but the second is 
less familiar. These terms have been analysed within the scope of the Segre model [43], 
i.e. for a spheroid not perfectly oriented in an anisotropic medium. It has been shown 
that the second term depends on the shape of the cavity, the value of the permanent 
dipole moment and relative orientation of & and A!’, the form of Raman tensor and 
the dielectric permittivity tensor. The expression for the contribution from the 
electrostatic interactions to the absorption dichroism contains not only the second 
rank orientational order parameter S but also those of fourth rank. For non-polar 
compounds or for those vibrations where CI’ = 0, only the first term in equation (34) 
remains: this is the only case when equations (25)-(27) are valid. 

The effect of the polarity on the absorption dichroism has been studied [39,43]. 
Some experimental results concerning the electrostatic interactions have been given in 
[39] and have been used to determine the local field anisotropy for 5CB (z3 in 
table 1). But they are based only on the measurements of the spherical probe 
absorption dichroism and there is a lack of direct measurements of the local field 
anisotropy and the permanent dipole contributions to the absorption dichroism of 
mesogenic molecules themselves. Hence, the answer to the question concerning the 
relative importance of electrostatic interactions remains incomplete. 

4.5. Some additional remarks 
It should be emphasized that not only are the absorption coefficients and refractive 

indices dependent on the local field, but all other optical properties are also. In 
the same way as we have discussed for absorption spectra, the results of other 
optical experiments, namely Rayleigh and Raman (especially resonance) scattering, 
luminescence can be treated in the same way. In addition, we can consider the use of 
optically active probes [44]. This modification permits us, in principle, to obtain 
information from methods involving the dispersion of the optical rotation and 
circular dichroism. Of course, there are additional difficulties for not only does 
the anisotropy but also the fluctuations of the local field can contribute to the 
depolarization ratios [45]; orientational relaxation often modifies luminescence 
spectra. 

5. Conclusions 
What should be done in the future? In a theoretical sense it is clear that there are 

several unresolved problems in overcoming such simplifications as the cavity/ 
continuum model, the point polarizability approximation, etc., to obtain a more 
adequate Lorenz-Lorentz like relation. In view of the large size and complexity of 
mesogenic molecules, these problems may be never resolved in a simple manner. 
However we wish to stress that existing theories have already given us the main 
difference between the Lorenz-Lorentz equation for an anisotropic liquid and that for 
isotropic liquid: L is a tensor and its anisotropy is determined by the pair distribution 
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function. As we can see from table 1, the uncertainties in predicting and determining 
z are still of the order of 100 per cent. We believe that in the near future progress can 
be made in the evaluation of the structural anisotropy factor. We have mentioned that 
almost all optical experiments contain information about this factor; unfortunately 
we do not know how to extract it properly. Most of the work in this field deals with 
absorption dichroism. In the previous section we have discussed the shortcomings and 
some of the difficulties of this method: uncertainties in the evaluation of the electro- 
static interaction contribution and all statistical averages do not characterize the 
molecule as a whole but only the behaviour of the chromophore. On the other hand 
this last feature gives us considerable advantages. Combining I.R. and N.M.R. data, 
we can determine the local field experienced by different bonds in the molecule. This 
is the way to improve the point-polarizability approximation and to introduce, for 
example, in the Lorenz-Lorentz equation for liquid crystals a more realistic electron 
density distribution over the molecule. In this sense, other optical methods (probably 
in combination with magnetic methods) seem to be even more informative. 

The interest in such investigations lies not in the possibility of reproducing the 
order parameter for real liquid crystals (although it is encouraging to find quantitative 
agreement). The order parameter S is a coefficient in the single-particle orientational 
distribution function and, as we have shown, the structural anisotropy factor is a 
coefficient in the expansion of the pair distribution function in an infinite series in 
Wigner rotation functions. The pair distribution function is undoubtedly much less 
studied. Keeping in mind that such interesting phenomena as antiferroelectric packing, 
induced and re-entrant phases are characterized frequently not by peculiarities in the 
temperature dependence of the parameter S, but primarily by changes in the pair 
distribution, we can understand the significance of the local field studies in liquid 
crystals. However because of the complexity of liquid-crystalline systems, only by a 
combination of the results of theory, experiment and probably computer simulations 
can we hope to improve our understanding of these fascinating materials. 

Appendix 
An alternative local field correction can be found in the literature concerning the 

molecular statistical theory of the refractive indices of liquid crystals [4,15]. A 
microscopic L tensor has been defined [4] in such a way that L, = $, and the local 
field factor is obtained as 

In this approach all correlation terms are included in the right hand side of the 
Lorenz-Lorentz equation. We shall not discuss here the results of [4,15] in a more 
detailed way because of some strange consequences. Thus the general equations for 
the L tensor obtained [4] in the limiting case of a solid crystal constituted of perfectly 
oriented molecules are according to [15] (in the notations of equations (12) and ( 1  3 ) ) :  

Because of the discontinuity of l / r [g(r i )  - I] in the limit r + 0, it can be shown, that 
the results of [4,15] do not satisfy the normalization condition L,, + 2L, = 1 and 
so are unlikely to be reliable. 
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At the same time, another approach [5] which is valid in the absence of short  range 
orientational correlations (this means valid both for perfect alignment and  in the 
absence of any  orientational correlation) gives (cf. equation (14)) 
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